98 research outputs found

    Bioavailability of Rosehip (Rosa canina L.) Infusion Phenolics Prepared by Thermal, Pulsed Electric Field and High Pressure Processing

    Get PDF
    In this study, the in vitro bioavailability of rosehip infusion phenolics, mainly catechin, as a response to conventional and non-thermal treatments by combining gastrointestinal digestion and a Caco-2 cell culture model, was investigated. After application of thermal treatment (TT, 85 °C/10 min), high pressure (HPP, 600 MPa/5 min) or pulsed electric field (PEF, 15 kJ/kg) processing, all samples were subjected to simulated gastrointestinal digestion. Then, the amount of maximum non-toxic digest ratio was determined by the cytotoxicity sulforhodamine B (SRB) assay. Next, Caco-2 cells were exposed to 1:5 (v/v) times diluted digests in order to simulate the transepithelial transportation of catechin. Results showed that non-thermally processed samples (5.19 and 4.62% for HPP and PEF, respectively) exhibited greater transportation across the epithelial cell layer compared to than that of the TT-treated sample (3.42%). The present study highlighted that HPP and PEF, as non-thermal treatments at optimized conditions for infusions or beverages, can be utilized in order to enhance the nutritional quality of the final products

    Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds

    Get PDF
    Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability

    Cell systems to investigate the impact of polyphenols on cardiovascular health

    Get PDF
    Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites

    Investigating the antioxidant properties and rutin content of Sea buckthorn (Hippophae rhamnoides L.) leaves and branches

    Get PDF
    The present study focused on the antioxidant properties and rutin content of leaves and branches of Hippophae rhamnoides L. (Sea buckthorn) in Turkey. Dried leaves (leaf tea), processed (PB) and unprocessed branches (UB) of Sea buckthorn (SBT) were extracted with ethanol and prepared in forms of aqueous extract (AE). All samples were analyzed for their contents of rutin, total phenolics (TPC), total flavonoids (TFC) and total antioxidant capacity by using DPPH and CUPRAC methods. TPC of leaves from ethanolic extracts (EE) were significantly higher than UB and PB extracts. The DPPH scavenging activity of extracts ranged from 41.93 ± 3.57 and 132.43 ± 6.57 mg trolox equivalent (TE)/g, and the antioxidant capacity measured with CUPRAC method were in between 129.4 ± 18.1 and 538.5 ± 34.8 mg TE/g. Both EE and AE of leaf samples had significantly higher rutin content compared to the UB and PB samples. Taking the high antioxidant and rutin content of leaves into account and with respect to their positive health effects, consumption of SBT as a herbal tea should be investigated.Keywords: Sea buckthorn, Hippophae rhamnoides, leaves, antioxidant, phenolic profile, rutin conten

    Chemistry of Protein-Phenolic Interactions Toward the Microbiota and Microbial Infections

    Get PDF
    Along with health concerns, interest in plants as food and bioactive phytochemical sources has been increased in the last few decades. Phytochemicals as secondary plant metabolites have been the subject of many studies in different fields. Breakthrough for research interest on this topic is re-juvenilized with rising relevance in this global pandemics\u27 era. The recent COVID-19 pandemic attracted the attention of people to viral infections and molecular mechanisms behind these infections. Thus, the core of the present review is the interaction of plant phytochemicals with proteins as these interactions can affect the functions of co-existing proteins, especially focusing on microbial proteins. To the best of our knowledge, there is no work covering the protein-phenolic interactions based on their effects on microbiota and microbial infections. The present review collects and defines the recent data, representing the interactions of phenolic compounds -primarily flavonoids and phenolic acids- with various proteins and explores how these molecular-level interactions account for the human health directly and/or indirectly, such as increased antioxidant properties and antimicrobial capabilities. Furthermore, it provides an insight about the further biological activities of interacted protein-phenolic structure from an antiviral activity perspective. The research on the protein-phenolic interaction mechanisms is of great value for guiding how to take advantage of synergistic effects of proteins and polyphenolics for future medical and nutritive approaches and related technologies

    Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals

    Get PDF
    peer-reviewedFoods are good sources of vitamins, minerals and dietary fibers as well as phytochemicals, which are beneficial for the human body as nutritional supplements. The nutritional value (crude fibers, crude proteins, crude fats, flavonols, carotenoids, polyphenols, glucosinolate, chlorophyll, and ascorbic acid) and biological or functional properties (antioxidant activity, anticancer activity, or anti-mutagenic activity) of foods can be well retained and protected with the appropriate cooking methods. The chemical, physical and enzyme modifications that occur during cooking will alter the dietary phytochemical antioxidant capacity and digestibility. This paper reviewed the recent advances on the effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Furthermore, the possible mechanisms underlying these changes were discussed, and additional implications and future research goals were suggested. The domestic cooking process for improving the palatability of foods and increasing the bioavailability of nutrients and bioactive phytochemicals has been well supported

    Effects of honey addition on antioxidative properties of different herbal teas

    Get PDF
    Tea and herbal infusions are among the major contributors of phenolic compounds, specifically flavonoids, in our daily diet. Honey is another antioxidant-rich food that is widely used as a natural sweetener. In this work, the effects of honey addition on antioxidant properties of different herbal teas were investigated. For this purpose, 2 different types of honey (flower and pine honey) were added into 9 different herbal teas (melissa, green tea, rosehip, sage, echinacea, fennel, linden, daisy, and ginger) at 4 different temperatures (55°C, 65°C, 75°C, and 85°C), and the changes in the content of total pheolics, total flavonoids, and total antioxidant capacity were determined. The total phenolic content and the total antioxidant capacity of the honey-added-tea samples were found to be increased (up to 57% for both), especially with pine honey and at higher temperatures of honey addition. The findings of this study supported the use of honey as a natural sweetener in tea in order to be able to benefit from the health-enhancing antioxidative properties of these two promising food products

    Combined Neutrase-Alcalase Protein Hydrolysates from Hazelnut Meal, a Potential Functional Food Ingredient

    Get PDF
    Consumers\u27 interest in functional foods has significantly increased in the past few years. Hazelnut meal, the main valuable byproduct of the hazelnut oil industry, is a rich source of proteins and bioactive peptides and thus has great potential to become a valuable functional ingredient. In this study, hazelnut protein hydrolysates obtained by a single or combined hydrolysis by Alcalase and Neutrase were mainly characterized for their physicochemical properties (SDS-PAGE, particle size distribution, Fourier-transform infrared (FTIR) spectroscopy, molecular weight distribution, etc.) and potential antiobesity effect (Free fatty acid (FFA) release inhibition), antioxidant activity (DPPH and ABTS methods), and emulsifying properties. The impact of a microfluidization pretreatment was also investigated. The combination of Alcalase with Neutrase permitted the highest degree of hydrolysis (DH; 15.57 \ub1 0.0%) of hazelnut protein isolate, which resulted in hydrolysates with the highest amount of low-molecular-weight peptides, as indicated by size exclusion chromatography (SEC) and SDS-PAGE. There was a positive correlation between the DH and the inhibition of FFA release by pancreatic lipase (PL), with a significant positive effect of microfluidization when followed by Alcalase hydrolysis. Microfluidization enhanced the emulsifying activity index (EAI) of protein isolates and hydrolysates. Low hydrolysis by Neutrase had the best effect on the EAI (84.32 \ub1 1.43 (NH) and 88.04 \ub1 2.22 m2/g (MFNH)), while a negative correlation between the emulsifying stability index (ESI) and the DH was observed. Again, the combined Alcalase-Neutrase hydrolysates displayed the highest radical scavenging activities (96.63 \ub1 1.06% DPPH and 98.31 \ub1 0.46% ABTS). FTIR results showed that the application of microfluidization caused the unfolding of the protein structure. The individual or combined application of the Alcalase and Neutrase enzymes caused a switch from the β-sheet organization of the proteins to α-helix structures. In conclusion, hazelnut meal may be a good source of bioactive and functional peptides. The control of its enzymatic hydrolysis, together with an appropriate pretreatment such as microfluidization, may be crucial to achieve the best suitable activity
    • …
    corecore